UrbanPro

Learn Data Science from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

Define overfitting and underfitting in machine learning.

Asked by Last Modified  

Follow 1
Answer

Please enter your answer

: Deciphering Overfitting and Underfitting in Machine Learning - Insights from UrbanPro's Expert Tutors Introduction: As an experienced tutor registered on UrbanPro.com, I'm here to clarify the concepts of overfitting and underfitting in machine learning. UrbanPro.com is your trusted marketplace for...
read more

: Deciphering Overfitting and Underfitting in Machine Learning - Insights from UrbanPro's Expert Tutors

Introduction: As an experienced tutor registered on UrbanPro.com, I'm here to clarify the concepts of overfitting and underfitting in machine learning. UrbanPro.com is your trusted marketplace for discovering the best online coaching for machine learning, connecting you with expert tutors who can demystify these crucial aspects of model performance.

Understanding Overfitting and Underfitting:

In machine learning, overfitting and underfitting are two common phenomena that impact the performance of predictive models. Let's delve into each of them:

1. Overfitting:

  • Definition: Overfitting occurs when a machine learning model learns the training data too well, capturing noise and random fluctuations, rather than the underlying patterns.

  • Characteristics:

    • Excessive Complexity: Overfitted models tend to be overly complex, with too many parameters.
    • Low Bias: They exhibit low bias, as they fit the training data closely.
    • High Variance: Overfitted models have high variance, making them sensitive to small fluctuations in the data.
    • Poor Generalization: They perform exceptionally well on the training data but poorly on unseen or validation data.
  • Causes:

    • Large Model Capacity: Using a model with excessive capacity (too many features, high-degree polynomial, deep neural network).
    • Insufficient Data: When the training dataset is small, the model may overfit to the limited information.
  • Impact:

    • Model Error: Overfit models have high error rates on unseen data, rendering them impractical for real-world use.
    • Loss of Generalization: They fail to generalize well to new, unseen examples.
    • Unreliable Predictions: Predictions made by overfit models are often unreliable and unpredictable.

2. Underfitting:

  • Definition: Underfitting occurs when a machine learning model is too simple to capture the underlying patterns in the training data.

  • Characteristics:

    • Excessive Bias: Underfitted models exhibit high bias as they oversimplify the problem.
    • Low Variance: They have low variance, making them less sensitive to training data fluctuations.
    • Lack of Model Complexity: These models lack the necessary complexity to capture essential patterns.
  • Causes:

    • Model Complexity: Using an overly simplistic model that cannot represent the data adequately.
    • Insufficient Training: Inadequate training or undertraining of the model.
  • Impact:

    • Model Error: Underfitted models have high error rates on both training and unseen data.
    • Limited Predictive Power: They lack predictive power and fail to capture meaningful relationships in the data.
    • Poor Generalization: These models also perform poorly on unseen data.

How to Address Overfitting and Underfitting:

To combat overfitting and underfitting, the following strategies can be employed:

For Overfitting:

  • Reduce Model Complexity: Use simpler models or employ techniques like feature selection, dimensionality reduction, or regularization.
  • Cross-Validation: Implement cross-validation to assess model performance on multiple folds of data and detect overfitting.
  • More Data: Increase the size of the training dataset to provide the model with more information.

For Underfitting:

  • Increase Model Complexity: Consider more complex models that can capture the underlying patterns.
  • Feature Engineering: Create additional relevant features or use feature transformations.
  • More Training: Train the model for a longer duration or with more iterations.

Conclusion:

Overfitting and underfitting are critical considerations in machine learning, impacting the model's predictive power and generalization to new data. UrbanPro.com is your gateway to connecting with experienced tutors who offer the best online coaching for machine learning, including guidance on effectively managing model complexity and achieving balanced performance. By mastering these concepts, you'll be better equipped to create models that strike the right balance between fitting the training data and making accurate predictions on unseen data.

 
read less
Comments

Related Questions

What is difference between data science and SAP. Which is best in compare for getting jobs as fast as possible

Hi Both have different uniquness with importance value. you will get a good prospectives on SAP for career growth.
Ravindra

I want to learn data science in home itself bcz i dont want much time to take any coaching and also most of the institutes are asking high amount for  training. Pease lemme know how i can prepare myself.

First of all you start leaning following. 1.Database(Sql,Nosql) 2 Python,Pandas,Numpy 3 Basic Linux,Big Data(Hadoop,Scala,Spark) 4. Machine Learning 5. Deep Learning
Vishal

Is that possible to do machine learning and Data science course after B.com, MBA Finance and marketing students and how is career growth? 

People from any background can learn Machine Learning & Data Science concepts. But all it requires is you need to stay focus and continuous practice. It can be applied in any domain like Finance, Marketing,...
Priya

I want to get into data science but I dont have any prior knowledge on any of the programing languages, how do I go about it?

Easiest way to get started is with simlpe tools like excel and regression. Doesn't require programming language, basic maths and statistics would suffice to get the grasp at beginner level. Next, more...
Likith

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Related Lessons

Discrimination, classification and pattern recognition
The importance of classification in science has already been remarked upon inChapter 6, where techniques were described for examining multivariate data forthe presence of relatively distinct groups or...

13 Things Every Data Scientist Must Know Today
We have spent close to a decade in data science & analytics now. Over this period, We have learnt new ways of working on data sets and creating interesting stories. However, before we could succeed,...

Types of Data
The data, which is under our primary consideration, contains a series of observations and measurements, made various subjects, patients, objects or other entities of interest. They might comprise the results...

Topic Modeling in Text Mining : LDA
Latent Dirichlet allocation (LDA) Topic modeling is a method for unsupervised classification of text documents, similar to clustering on numeric data, which finds natural groups of items even when we’re...

What is Logistic Regression Model ?
Logistic regression is a form of regression which is used when the dependent is a dichotomy (yes or no) and the independents of any type (either continuous or binary). Logistic regression can be used...

Recommended Articles

Information technology consultancy or Information technology consulting is a specialized field in which one can set their focus on providing advisory services to business firms on finding ways to use innovations in information technology to further their business and meet the objectives of the business. Not only does...

Read full article >

Microsoft Excel is an electronic spreadsheet tool which is commonly used for financial and statistical data processing. It has been developed by Microsoft and forms a major component of the widely used Microsoft Office. From individual users to the top IT companies, Excel is used worldwide. Excel is one of the most important...

Read full article >

Hadoop is a framework which has been developed for organizing and analysing big chunks of data for a business. Suppose you have a file larger than your system’s storage capacity and you can’t store it. Hadoop helps in storing bigger files than what could be stored on one particular server. You can therefore store very,...

Read full article >

Whether it was the Internet Era of 90s or the Big Data Era of today, Information Technology (IT) has given birth to several lucrative career options for many. Though there will not be a “significant" increase in demand for IT professionals in 2014 as compared to 2013, a “steady” demand for IT professionals is rest assured...

Read full article >

Looking for Data Science Classes?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Data Science Classes?

The best tutors for Data Science Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Learn Data Science with the Best Tutors

The best Tutors for Data Science Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more