∫ sin‾¹ x dx
Let's use integration by parts
Let u = sin‾¹ x. ( du = 1/√1 - x² dx ∴ dx = du/√1 - x² ). dv = dx ∴ v = ∫ 1• dx = x
∴ ∫ sin‾¹ x dx = sin‾¹ x • x - ∫ x • 1/(√1 - x²) dx ( ∫ u dv = u v - ∫ v du )
= x sin‾¹ x - ∫ x/(√ 1 - x²) dx
[ now let us use " integration by u substitution" to solve ( ∫ x/√1 - x²)dx ]
let u = 1 - x² ∴ du = - 2 x dx or dx = - du/2x. ( by substituting u & du )
= x sin‾¹ x - ∫ (-x/√u • 2 • x du ( x cancels out )
= x sin‾¹ x + 1/2 ∫ u¯½ du. [ by power rule, x^n = (x^n+1)/(n+1)]
= x sin‾¹ x + 1/2 [ u½/½ ] +C
= x sin‾¹ x + 1/2 • 2/1 [ √u ] + C
= x sin‾¹ x + 1 • √u + C. ( Substituting back u = 1 - x² )
∫ sin¯¹ x dx = [ x ( sin¯¹ x ) + (√ 1 - x² ) ] + C