UrbanPro
true

Find the best tutors and institutes for Class 10 Tuition

Find Best Class 10 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 6.6 with Free Lessons & Tips

In the given figure, two chords AB and CD intersect each other at the point P.

Prove that:

Let us join CB.

(i) In ΔAPC and ΔDPB,

∠APC = ∠DPB (Vertically opposite angles)

∠CAP = ∠BDP (Angles in the same segment for chord CB)

ΔAPC ∼ ΔDPB (By AA similarity criterion)

(ii) We have already proved that

ΔAPC ∼ ΔDPB

We know that the corresponding sides of similar triangles are proportional.

∴ AP. PB = PC. DP

 

 

Comments

In the given figure, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle.

Prove that:

(ii) 

(i) In ΔPAC and ΔPDB,

∠P = ∠P (Common)

∠PAC = ∠PDB (Exterior angle of a cyclic quadrilateral is ∠PCA = ∠PBD equal to the opposite interior angle)

∴ ΔPAC ∼ ΔPDB

(ii)We know that the corresponding sides of similar triangles are proportional.

 

Comments

In the given figure, D is a point on side BC of รข?? ABC such that .

Prove that AD is the bisector of 

Let us extend BA to P such that AP = AC. Join PC.

It is given that,

By using the converse of basic proportionality theorem, we obtain

AD || PC

⇒ ∠BAD = ∠APC (Corresponding angles) … (1)

And, ∠DAC = ∠ACP (Alternate interior angles) … (2)

By construction, we have

AP = AC

⇒ ∠APC = ∠ACP … (3)

On comparing equations (1), (2), and (3), we obtain

∠BAD = ∠APC

⇒ AD is the bisector of the angle BAC.

 

Comments

Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see the figure)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?

 

Let AB be the height of the tip of the fishing rod from the water surface. Let BC be the horizontal distance of the fly from the tip of the fishing rod.

Then, AC is the length of the string.

AC can be found by applying Pythagoras theorem in ΔABC.

AC2 = AB2 + BC2

AB2 = (1.8 m)2 + (2.4 m)2

AB2 = (3.24 + 5.76) m2

AB2 = 9.00 m2

Thus, the length of the string out is 3 m.

She pulls the string at the rate of 5 cm per second.

Therefore, string pulled in 12 seconds = 12 × 5 = 60 cm = 0.6 m

Let the fly be at point D after 12 seconds.

Length of string out after 12 seconds is AD.

AD = AC − String pulled by Nazima in 12 seconds

= (3.00 − 0.6) m

= 2.4 m

In ΔADB,

AB2 + BD2 = AD

(1.8 m)2 + BD2 = (2.4 m)2

BD2 = (5.76 − 3.24) m2 = 2.52 m2

BD = 1.587 m

Horizontal distance of fly = BD + 1.2 m

= (1.587 + 1.2) m

= 2.787 m

= 2.79 m

Comments

In the given fig, AD is a median of a triangle ABC and . Prove that 

i) Applying Pythagoras theorem in ΔAMD, we obtain

AM2 + MD2 = AD… (1)

Applying Pythagoras theorem in ΔAMC, we obtain

AM2 + MC2 = AC2

AM2 + (MD + DC)2 = AC2

(AM2 + MD2) + DC2 + 2MD.DC = AC2

AD2 + DC2 + 2MD.DC = AC2 [Using equation (1)]

Using the result, , we obtain

(ii) Applying Pythagoras theorem in ΔABM, we obtain

AB2 = AM2 + MB2

= (AD2 − DM2) + MB2

= (AD2 − DM2) + (BD − MD)2

= AD2 − DM2 + BD2 + MD2 − 2BD × MD

= AD2 + BD2 − 2BD × MD

(iii)Applying Pythagoras theorem in ΔABM, we obtain

AM2 + MB2 = AB2 … (1)

Applying Pythagoras theorem in ΔAMC, we obtain

AM2 + MC2 = AC2 … (2)

Adding equations (1) and (2), we obtain

2AM2 + MB2 + MC2 = AB2 + AC2

2AM2 + (BD − DM)2 + (MD + DC)2 = AB2 + AC2

2AM2+BD2 + DM2 − 2BD.DM + MD2 + DC2 + 2MD.DC = AB+ AC2

2AM2 + 2MD2 + BD2 + DC2 + 2MD (− BD + DC) = AB2 + AC2

  

Comments

Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Let ABCD be a parallelogram.

Let us draw perpendicular DE on extended side AB, and AF on side DC.

Applying Pythagoras theorem in ΔDEA, we obtain

DE2 + EA2 = DA2 … (i)

Applying Pythagoras theorem in ΔDEB, we obtain

DE2 + EB2 = DB2

DE2 + (EA + AB)2 = DB2

(DE2 + EA2) + AB2 + 2EA × AB = DB2

DA2 + AB2 + 2EA × AB = DB2 … (ii)

Applying Pythagoras theorem in ΔADF, we obtain

AD2 = AF2 + FD2

Applying Pythagoras theorem in ΔAFC, we obtain

AC2 = AF2 + FC2

= AF2 + (DC − FD)2

= AF2 + DC+ FD2 − 2DC × FD

= (AF2 + FD2) + DC2 − 2DC × FD

AC2 = AD2 + DC2 − 2DC × FD … (iii)

Since ABCD is a parallelogram,

AB = CD … (iv)

And, BC = AD … (v)

In ΔDEA and ΔADF,

∠DEA = ∠AFD (Both 90°)

∠EAD = ∠ADF (EA || DF)

AD = AD (Common)

∴ ΔEAD  ΔFDA (AAS congruence criterion)

⇒ EA = DF … (vi)

Adding equations (i) and (iii), we obtain

DA2 + AB2 + 2EA × AB + AD2 + DC2 − 2DC × FD = DB2 + AC2

DA2 + AB2 + AD2 + DC2 + 2EA × AB − 2DC × FD = DB2 + AC2

BC2 + AB2 + AD2 + DC2 + 2EA × AB − 2AB × EA = DB2 + AC2

[Using equations (iv) and (vi)]

AB2 + BC2 + CD2 + DA2 = AC2 + BD2

Comments

In the figure, ABC is a triangle in which and . Prove that

Applying Pythagoras theorem in ΔADB, we obtain

AD2 + DB2 = AB2

⇒ AD2 = AB2 − DB… (1)

Applying Pythagoras theorem in ΔADC, we obtain

AD2 + DC2 = AC2

AB2 − BD2 + DC2 = AC2 [Using equation (1)]

AB2 − BD2 + (BC − BD)2 = AC2

AC2 = AB2 − BD2 + BC2 + BD2 −2BC × BD

= AB2 + BC2 − 2BC × BD

Comments

In the figure, ABC is a triangle in which  and  produced. Prove that .

Applying Pythagoras theorem in ΔADB, we obtain

AB2 = AD2 + DB2 … (1)

Applying Pythagoras theorem in ΔACD, we obtain

AC2 = AD+ DC2

AC2 = AD2 + (DB + BC)2

AC2 = AD2 + DB2 + BC2 + 2DB × BC

AC2 = AB2 + BC2 + 2DB × BC [Using equation (1)]

Comments

In the figure, PS is the bisector of  of . Prove that

Let us draw a line segment RT parallel to SP which intersects extended line segment QP at point T.

Given that, PS is the angle bisector of ∠QPR.

∠QPS = ∠SPR … (1)

By construction,

∠SPR = ∠PRT (As PS || TR) … (2)

∠QPS = ∠QTR (As PS || TR) … (3)

Using these equations, we obtain

∠PRT = ∠QTR

∴ PT = PR

By construction,

PS || TR

By using basic proportionality theorem for ΔQTR,

  

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 10 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 10 Tuition Classes?

Find best tutors for Class 10 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 10 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more