Find the best tutors and institutes for Class 12 Tuition
Search in
Write Minors and Cofactors of the elements of following determinants:
(i) (ii)
(i) The given determinant is.
Minor of element aij is Mij.
∴M11 = minor of element a11 = 3
M12 = minor of element a12 = 0
M21 = minor of element a21 = −4
M22 = minor of element a22 = 2
Cofactor of aij is Aij = (−1)i + j Mij.
∴A11 = (−1)1+1 M11 = (−1)2 (3) = 3
A12 = (−1)1+2 M12 = (−1)3 (0) = 0
A21 = (−1)2+1 M21 = (−1)3 (−4) = 4
A22 = (−1)2+2 M22 = (−1)4 (2) = 2
(ii) The given determinant is.
Minor of element aij is Mij.
∴M11 = minor of element a11 = d
M12 = minor of element a12 = b
M21 = minor of element a21 = c
M22 = minor of element a22 = a
Cofactor of aij is Aij = (−1)i + j Mij.
∴A11 = (−1)1+1 M11 = (−1)2 (d) = d
A12 = (−1)1+2 M12 = (−1)3 (b) = −b
A21 = (−1)2+1 M21 = (−1)3 (c) = −c
A22 = (−1)2+2 M22 = (−1)4 (a) = a
(i) (ii)
(i) The given determinant is.
By the definition of minors and cofactors, we have:
M11 = minor of a11=
M12 = minor of a12=
M13 = minor of a13 =
M21 = minor of a21 =
M22 = minor of a22 =
M23 = minor of a23 =
M31 = minor of a31=
M32 = minor of a32 =
M33 = minor of a33 =
A11 = cofactor of a11= (−1)1+1 M11 = 1
A12 = cofactor of a12 = (−1)1+2 M12 = 0
A13 = cofactor of a13 = (−1)1+3 M13 = 0
A21 = cofactor of a21 = (−1)2+1 M21 = 0
A22 = cofactor of a22 = (−1)2+2 M22 = 1
A23 = cofactor of a23 = (−1)2+3 M23 = 0
A31 = cofactor of a31 = (−1)3+1 M31 = 0
A32 = cofactor of a32 = (−1)3+2 M32 = 0
A33 = cofactor of a33 = (−1)3+3 M33 = 1
(ii) The given determinant is.
By definition of minors and cofactors, we have:
M11 = minor of a11=
M12 = minor of a12=
M13 = minor of a13 =
M21 = minor of a21 =
M22 = minor of a22 =
M23 = minor of a23 =
M31 = minor of a31=
M32 = minor of a32 =
M33 = minor of a33 =
A11 = cofactor of a11= (−1)1+1 M11 = 11
A12 = cofactor of a12 = (−1)1+2 M12 = −6
A13 = cofactor of a13 = (−1)1+3 M13 = 3
A21 = cofactor of a21 = (−1)2+1 M21 = 4
A22 = cofactor of a22 = (−1)2+2 M22 = 2
A23 = cofactor of a23 = (−1)2+3 M23 = −1
A31 = cofactor of a31 = (−1)3+1 M31 = −20
A32 = cofactor of a32 = (−1)3+2 M32 = 13
A33 = cofactor of a33 = (−1)3+3 M33 = 5
Using Cofactors of elements of second row, evaluate.
The given determinant is.
We have:
M21 =
∴A21 = cofactor of a21 = (−1)2+1 M21 = 7
M22 =
∴A22 = cofactor of a22 = (−1)2+2 M22 = 7
M23 =
∴A23 = cofactor of a23 = (−1)2+3 M23 = −7
We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.
∴Δ = a21A21 + a22A22 + a23A23 = 2(7) + 0(7) + 1(−7) = 14 − 7 = 7
Using Cofactors of elements of third column, evaluate
The given determinant is.
We have:
M13 =
M23 =
M33 =
∴A13 = cofactor of a13 = (−1)1+3 M13 = (z − y)
A23 = cofactor of a23 = (−1)2+3 M23 = − (z − x) = (x − z)
A33 = cofactor of a33 = (−1)3+3 M33 = (y − x)
We know that Δ is equal to the sum of the product of the elements of the second row with their corresponding cofactors.
Hence,
If and Aij is Cofactors of aij, then value of Δ is given by
We know that:
Δ = Sum of the product of the elements of a column (or a row) with their corresponding cofactors
∴Δ = a11A11 + a21A21 + a31A31
Hence, the value of Δ is given by the expression given in alternative D.
The correct answer is D.
How helpful was it?
How can we Improve it?
Please tell us how it changed your life *
Please enter your feedback
UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.
Find best tutors for Class 12 Tuition Classes by posting a requirement.
Get started now, by booking a Free Demo Class