UrbanPro
true

Find the best tutors and institutes for Class 12 Tuition

Find Best Class 12 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 3.2 with Free Lessons & Tips

If andthen compute.

Comments

Simplify 

Comments

If, find values of x and y.

Comparing the corresponding elements of these two matrices, we get:

2xy = 10 and 3x + y = 5

Adding these two equations, we have:

5x = 15

x = 3

Now, 3x + y = 5

y = 5 − 3x

y = 5 − 9 = −4

x = 3 and y = −4

Comments

Let 

Find each of the following

(i) (ii) (iii)

(iv) (v)  

(i)

(ii)

(iii)

(iv) Matrix A has 2 columns. This number is equal to the number of rows in matrix B. Therefore, AB is defined as:

(v) Matrix B has 2 columns. This number is equal to the number of rows in matrix A. Therefore, BA is defined as:

Comments

Compute the following:

(i) (ii)

(iii)

(iv)

In the addition of matrices , we add similar row and column matrix with  another matrix . For example in first part a will be added with a , b with b , -b with b and a with a . 

Comments

Compute the indicated products

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Comments

If, and, then compute and. Also, verify that  

Comments

Find and Y, if

(i) and

(ii) and

(i)

Adding equations (1) and (2), we get:

(ii)

Multiplying equation (3) with (2), we get:

Multiplying equation (4) with (3), we get:

From (5) and (6), we have:

Now,

Comments

Find X, if and #mew_question#Find x and y, if

Comparing the corresponding elements of these two matrices, we have:

x = 3 and y = 3

Comments

Solve the equation for xyz and t if

Comparing the corresponding elements of these two matrices, we get:

Comments

Given, find the values of xyz and w.

Comparing the corresponding elements of these two matrices, we get:

Comments

If, show that.

Comments

(i)

(ii)

(i)

(ii)

Comments

Find if

We have A2 = A × A

Comments

If, prove that 

Comments

If and, find k so that 

Comments

Ifand I is the identity matrix of order 2, show that 

Comments

A trust fund has Rs 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

(a) Rs 1,800 (b) Rs 2,000

(a) Let Rs x be invested in the first bond. Then, the sum of money invested in the second bond will be Rs (30000 − x).

It is given that the first bond pays 5% interest per year and the second bond pays 7% interest per year.

Therefore, in order to obtain an annual total interest of Rs 1800, we have:

Thus, in order to obtain an annual total interest of Rs 1800, the trust fund should invest Rs 15000 in the first bond and the remaining Rs 15000 in the second bond.

(b) Let Rs x be invested in the first bond. Then, the sum of money invested in the second bond will be Rs (30000 − x).

Therefore, in order to obtain an annual total interest of Rs 2000, we have:

Thus, in order to obtain an annual total interest of Rs 2000, the trust fund should invest Rs 5000 in the first bond and the remaining Rs 25000 in the second bond.

Comments

The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

The bookshop has 10 dozen chemistry books, 8 dozen physics books, and 10 dozen economics books.

The selling prices of a chemistry book, a physics book, and an economics book are respectively given as Rs 80, Rs 60, and Rs 40.

The total amount of money that will be received from the sale of all these books can be represented in the form of a matrix as:

Thus, the bookshop will receive Rs 20160 from the sale of all these books.

Comments

Assume XYZW and P are matrices of order, and respectively. The restriction on nk and p so that will be defined are:

A. k = 3, p = n

B. k is arbitrary, p = 2

C. p is arbitrary, k = 3

D. k = 2, p = 3

Matrices P and Y are of the orders p × k and 3 × k respectively.

Therefore, matrix PY will be defined if k = 3. Consequently, PY will be of the order p × k.

Matrices W and Y are of the orders n × 3 and 3 × k respectively.

Since the number of columns in W is equal to the number of rows in Y, matrix WY is well-defined and is of the order n × k.

Matrices PY and WY can be added only when their orders are the same.

However, PY is of the order p × k and WY is of the order n × k. Therefore, we must have p = n.

Thus, k = 3 and p = n are the restrictions on n, k, and p so that will be defined.

Comments

Assume XYZW and P are matrices of order, and respectively. If n = p, then the order of the matrix is

(A) p × 2 (B) 2 × n (C) n × 3 (D) p × n

The correct answer is B.

Matrix X is of the order 2 × n.

Therefore, matrix 7X is also of the same order.

Matrix Z is of the order 2 × p, i.e., 2 × n [Since n = p]

Therefore, matrix 5Z is also of the same order.

Now, both the matrices 7X and 5Z are of the order 2 × n.

Thus, matrix 7X − 5Z is well-defined and is of the order 2 × n.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 12 Tuition Classes?

Find best tutors for Class 12 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 12 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more