UrbanPro
true

Find the best tutors and institutes for Class 6 Tuition

Find Best Class 6 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 3.5 with Free Lessons & Tips

Which of the following statements are true?

(a) If a number is divisible by 3, it must be divisible by 9.

(b) If a number is divisible by 9, it must be divisible by 3.

(c) A number is divisible by 18, if it is divisible by both 3 and 6.

(d) If a number is divisible by 9 and 10 both, then it must be divisible by 90.

(e) If two numbers are co-primes, at least one of them must be prime.

(f) All numbers which are divisible by 4 must also be divisible by 8.

(g) All numbers which are divisible by 8 must also be divisible by 4.

(h) If a number exactly divides two numbers separately, it must exactly divide their sum.

(i) If a number exactly divides the sum of two numbers, it must exactly divide the two numbers separately.

(a) False

6 is divisible by 3, but not by 9.

(b) True, as 9 = 3 × 3

Therefore, if a number is divisible by 9, then it will also be divisible by

3.

(c) False

30 is divisible by 3 and 6 both, but it is not divisible by 18.

(d) True, as 9 × 10 = 90

Therefore, if a number is divisible by 9 and 10 both, then it will also be divisible by 90.

(e) False

15 and 32 are co-primes and also composite.

(f) False

12 is divisible by 4, but not by 8.

(g) True, as 8 = 2 × 4

Therefore, if a number is divisible by 8, then it will also be divisible by 2 and 4.

(h) True

2 divides 4 and 8 as well as 12. (4 + 8 = 12)

(i) False

2 divides 12, but does not divide 7 and 5.

Comments

Here are two different factor trees for 60. Write the missing numbers.

(a) As 6 = 2 × 3 and 10 = 5 × 2

(b) As 60 = 30 × 2, 30 = 10 × 3, and 10 = 5 × 2

Comments

Which factors are not included in the prime factorization of a composite number?

1 and the number itself

Comments

Write the greatest 4-digit number and express it in terms of its prime factors.

Greatest 4 digit number is 9999

Prime factors - 3x3x11x101

Comments

Write the smallest 5-digit number and express it in the form of its prime factors.

Smallest 5 digit number - 10000

Prime factors - 2x2x5x5x2x25x5

Comments

Find all prime factors of 1729 and arrange them in ascending order. Now state the relation, if any; between two consecutive prime factors.

1729 = 7 × 13 × 19

13 − 7 = 6, 19 − 13 = 6

The difference of two consecutive prime factors is 6.

Comments

The product of three consecutive numbers is always divisible by 6. Verify this statement with the help of some examples.

2 × 3 × 4 = 24, which is divisible by 6

9 × 10 × 11 = 990, which is divisible by 6

20 × 21 × 22 = 9240, which is divisible by 6

Comments

The sum of two consecutive odd numbers is divisible by 4. Verify this statement with the help of some examples.

Two consecutive odd number is 3 and 5

Sum = 3+5 = 8 (divisible by 4)

Other is 9+11 = 20 ( divisible by 4)

7+9 = 16 (divisible by 4)

Comments

In which of the following expressions, prime factorization has been done?

(a) 24 = 2 × 3 × 4 (b) 56 = 7 × 2 × 2 × 2

(c) 70 = 2 × 5 × 7 (d) 54 = 2 × 3 × 9

(a) 24 = 2 × 3 × 4

Since 4 is composite, prime factorisation has not been done.

(b) 56 = 7 × 2 × 2 × 2

Since all the factors are prime, prime factorisation has been done.

(c) 70 = 2 × 5 × 7

Since all the factors are prime, prime factorisation has been done.

(d) 54 = 2 × 3 × 9

Since 9 is composite, prime factorisation has not been done.

Comments

Determine if 25110 is divisible by 45.

[Hint: 5 and 9 are co-prime numbers. Test the divisibility of the number by 5 and 9].

45 = 5 × 9

Factors of 5 = 1, 5

Factors of 9 = 1, 3, 9

Therefore, 5 and 9 are co-prime numbers.

Since the last digit of 25110 is 0, it is divisible by 5.

Sum of the digits of 25110 = 2 + 5 + 1 + 1 + 0 = 9

As the sum of the digits of 25110 is divisible by 9, therefore, 25110 is divisible by 9.

Since the number is divisible by 5 and 9 both, it is divisible by 45.

Comments

18 is divisible by both 2 and 3. It is also divisible by 2 × 3 = 6. Similarly, a number is divisible by both 4 and 6. Can we say that the number must also be divisible by 4 × 6 = 24? If not, give an example to justify our answer:

No. It is not necessary because 12 and 36 are divisible by 4 and 6 both, but are not divisible by 24.

Comments

I am the smallest number, having four different prime factors. Can you find me?

Since it is the smallest number of such type, it will be the product of 4 smallest prime numbers.

2 × 3 × 5 × 7 = 210

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 6 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 6 Tuition Classes?

Find best tutors for Class 6 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 6 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more