UrbanPro
true

Find the best tutors and institutes for Class 9 Tuition

Find Best Class 9 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn NCERT Exercise 10 with Free Lessons & Tips

How does the force of gravitation between two objects change when the distance between them is reduced to half?

According to the universal law of gravitation, gravitational force (F) acting between two objects is inversely proportional to the square of the distance (r) between them, i.e.,

If distance r becomes r/2, then the gravitational force will be proportional to 

Hence, if the distance is reduced to half, then the gravitational force becomes four times larger than the previous value.

Comments

Gravitational force acts on all objects in proportion to their masses. Why then, a heavy object does not fall faster than a light object?

All objects fall on ground with constant acceleration, called acceleration due to gravity (in the absence of air resistances). It is constant and does not depend upon the mass of an object. Hence, heavy objects do not fall faster than light objects

Comments

What is the magnitude of the gravitational force between the earth and a 1 kg object on its surface? (Mass of the earth is 6 × 1024 kg and radius of the earth is 6.4 × 106 m).

According to the universal law of gravitation, gravitational force exerted on an object of mass m is given by:

Where,

Mass of Earth, = 6 × 1024 kg

Mass of object, = 1 kg

Universal gravitational constant, G = 6.7 × 10−11 Nm2 kg−2

Since the object is on the surface of the Earth, r = radius of the Earth (R)

r = R = 6.4 × 106 m

Gravitational force, 

Comments

The earth and the moon are attracted to each other by gravitational force. Does the earth attract the moon with a force that is greater or smaller or the same as the force with which the moon attracts the earth? Why?

According to the universal law of gravitation, two objects attract each other with equal force, but in opposite directions. The Earth attracts the moon with an equal force with which the moon attracts the earth.

Comments

If the moon attracts the earth, why does the earth not move towards the moon?

The Earth and the moon experience equal gravitational forces from each other. However, the mass of the Earth is much larger than the mass of the moon. Hence, it accelerates at a rate lesser than the acceleration rate of the moon towards the Earth. For this reason, the Earth does not move towards the moon.

Comments

What happens to the force between two objects, if

(i) the mass of one object is doubled?

(ii) the distance between the objects is doubled and tripled?

(iii) the masses of both objects are doubled?

(i)

Doubled

(ii)

One-fourth and one-ninth

(iii)

four times

According to the universal law of gravitation, the force of gravitation between two objects is given by:

(i) F is directly proportional to the masses of the objects. If the mass of one object is doubled, then the gravitational force will also get doubled.

(ii) F is inversely proportional to the square of the distances between the objects. If the distance is doubled, then the gravitational force becomes one-fourth of its original value.

Similarly, if the distance is tripled, then the gravitational force becomes one-ninth of its original value.

(iii) F is directly proportional to the product of masses of the objects. If the masses of both the objects are doubled, then the gravitational force becomes four times the original value.

Comments

What is the importance of universal law of gravitation?

The universal law of gravitation proves that every object in the universe attracts every other object.

Comments

What is the acceleration of free fall?

When objects fall towards the Earth under the effect of gravitational force alone, then they are said to be in free fall. Acceleration of free fall is 9.8 m s−2, which is constant for all objects (irrespective of their masses).

Comments

What do we call the gravitational force between the Earth and an object?

Gravitational force between the earth and an object is known as the weight of the object.

 

Comments

Amit buys few grams of gold at the poles as per the instruction of one of his friends. He hands over the same when he meets him at the equator. Will the friend agree with the weight of gold bought? If not, why? [Hint: The value of g is greater at the poles than at the equator]

Weight of a body on the Earth is given by:

W = mg

Where,

m = Mass of the body

g = Acceleration due to gravity

The value of g is greater at poles than at the equator. Therefore, gold at the equator weighs less than at the poles. Hence, Amit’s friend will not agree with the weight of the gold bought.

Comments

Why will a sheet of paper fall slower than one that is crumpled into a ball?

When a sheet of paper is crumbled into a ball, then its density increases. Hence, resistance to its motion through the air decreases and it falls faster than the sheet of paper.

Comments

Gravitational force on the surface of the moon is onlyas strong as gravitational force on the Earth. What is the weight in newtons of a 10 kg object on the moon and on the Earth?

Weight of an object on the moon  Weight of an object on the Earth

Also,

Weight = Mass × Acceleration

Acceleration due to gravity, g = 9.8 m/s2

Therefore, weight of a 10 kg object on the Earth = 10 × 9.8 = 98 N

And, weight of the same object on the moon 

Comments

A ball is thrown vertically upwards with a velocity of 49 m/s. Calculate

(i) the maximum height to which it rises.

(ii)the total time it takes to return to the surface of the earth.

(i) 122.5 m (ii) 10 s

According to the equation of motion under gravity:

v2 − u2 = 2 gs

Where,

u = Initial velocity of the ball

v = Final velocity of the ball

s = Height achieved by the ball

g = Acceleration due to gravity

At maximum height, final velocity of the ball is zero, i.e., v = 0

= 49 m/s

During upward motion, g = − 9.8 m s−2

Let h be the maximum height attained by the ball.

Hence,

Let t be the time taken by the ball to reach the height 122.5 m, then according to the equation of motion:

v = u + gt

We get,

But,

Time of ascent = Time of descent

Therefore, total time taken by the ball to return = 5 + 5 = 10 s

Comments

A stone is released from the top of a tower of height 19.6 m. Calculate its final velocity just before touching the ground.

According to the equation of motion under gravity:

v2 − u2 = 2 gs

Where,

u = Initial velocity of the stone = 0

v = Final velocity of the stone

s = Height of the stone = 19.6 m

g = Acceleration due to gravity = 9.8 m s−2

∴ v2 − 02 = 2 × 9.8 × 19.6

v2 = 2 × 9.8 × 19.6 = (19.6)2

v = 19.6 m s− 1

Hence, the velocity of the stone just before touching the ground is 19.6 m s−1.

Comments

A stone is thrown vertically upward with an initial velocity of 40 m/s. Taking g = 10 m/s2, find the maximum height reached by the stone. What is the net displacement and the total distance covered by the stone?

According to the equation of motion under gravity:

v2 − u2 = 2 gs

Where,

u = Initial velocity of the stone = 40 m/s

v = Final velocity of the stone = 0

s = Height of the stone

g = Acceleration due to gravity = −10 m s−2

Let h be the maximum height attained by the stone.

Therefore,

Therefore, total distance covered by the stone during its upward and downward journey = 80 + 80 = 160 m

Net displacement of the stone during its upward and downward journey

= 80 + (−80) = 0

Comments

Calculate the force of gravitation between the earth and the Sun, given that the mass of the earth = 6 × 1024 kg and of the Sun = 2 × 1030 kg. The average distance between the two is 1.5 × 1011 m.

According to the universal law of gravitation, the force of attraction between the Earth and the Sun is given by:

Where,

MSun = Mass of the Sun = 2 × 1030 kg

MEarth = Mass of the Earth = 6 × 1024 kg

R = Average distance between the Earth and the Sun = 1.5 × 1011 m

G = Universal gravitational constant = 6.7 × 10−11 Nm2 kg−2

Comments

A stone is allowed to fall from the top of a tower 100 m high and at the same time another stone is projected vertically upwards from the ground with a velocity of 25 m/s. Calculate when and where the two stones will meet.

Let the two stones meet after a time t.

(i) For the stone dropped from the tower:

Initial velocity, u = 0

Let the displacement of the stone in time from the top of the tower be s.

Acceleration due to gravity, g = 9.8 m s−2

From the equation of motion,

(ii) For the stone thrown upwards:

Initial velocity, u = 25 m s−1

Let the displacement of the stone from the ground in time t be s'.

Acceleration due to gravity, g = −9.8 m s−2

Equation of motion,

The combined displacement of both the stones at the meeting point is equal to the height of the tower 100 m.

In 4 s, the falling stone has covered a distance given by equation (1) as

Therefore, the stones will meet after 4 s at a height (100 − 80) = 20 m from the ground

Comments

A ball thrown up vertically returns to the thrower after 6 s. Find

(a) the velocity with which it was thrown up,

(b) the maximum height it reaches, and

(c) its position after 4 s.

(a)

29.4 m/s

(b)

44.1 m

(c)

39.2 m above the ground

(a) Time of ascent is equal to the time of descent. The ball takes a total of 6 s for its upward and downward journey.

Hence, it has taken 3 s to attain the maximum height.

Final velocity of the ball at the maximum height, v = 0

Acceleration due to gravity, g = −9.8 m s−2

Equation of motion, v = u + gt will give,

0 = u + (−9.8 × 3)

u = 9.8 × 3 = 29.4 ms− 1

Hence, the ball was thrown upwards with a velocity of 29.4 m s−1.

(b) Let the maximum height attained by the ball be h.

Initial velocity during the upward journey, u = 29.4 m s−1

Final velocity, = 0

Acceleration due to gravity, g = −9.8 m s−2

From the equation of motion,

(c) Ball attains the maximum height after 3 s. After attaining this height, it will start falling downwards.

In this case,

Initial velocity, u = 0

Position of the ball after 4 s of the throw is given by the distance travelled by it during its downward journey in 4 s − 3 s = 1 s.

Equation of motion,  will give,

Total height = 44.1 m

This means that the ball is 39.2 m (44.1 m − 4.9 m) above the ground after 4 seconds.

Comments

In what direction does the buoyant force on an object immersed in a liquid act?

An object immersed in a liquid experiences buoyant force in the upward direction.

Comments

Why does a block of plastic released under water come up to the surface of water?

Two forces act on an object immersed in water. One is the gravitational force, which pulls the object downwards, and the other is the buoyant force, which pushes the object upwards. If the upward buoyant force is greater than the downward gravitational force, then the object comes up to the surface of the water as soon as it is released within water. Due to this reason, a block of plastic released under water comes up to the surface of the water.

Comments

The volume of 50 g of a substance is 20 cm3. If the density of water is 1 g cm−3, will the substance float or sink?

If the density of an object is more than the density of a liquid, then it sinks in the liquid. On the other hand, if the density of an object is less than the density of a liquid, then it floats on the surface of the liquid.

Here, density of the substance = 

The density of the substance is more than the density of water (1 g cm−3). Hence, the substance will sink in water.

Comments

The volume of a 500 g sealed packet is 350 cm3. Will the packet float or sink in water if the density of water is 1 g cm−3? What will be the mass of the water displaced by this packet?

Mass = 500g
Volume = 350cm^3
Density = Mass/Volume
= 500/350
= 1.42g/cm^3
The packet will sink because density of the packet is greater than the density of water.
Mass of water displaced by packet
= 350cm^3 X 1g/cm^3
= 350g

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 9 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 9 Tuition Classes?

Find best tutors for Class 9 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 9 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more