Teaching Experience & Curriculum Mastery: Over 9 years of Experience in mentoring & teaching Standard 10 students of Boards. 1. Subject Expertise;...
I have not taught at any college or school but I take home tuitions and I am proud to say that last year I taught three students at my home. The students...
I have taught Mathematics and Physics to Class 10 students extensively and made sure they got good grades in their board exams. In addition, I also...
Do you need help in finding the best teacher matching your requirements?
Post your requirement nowExpertise in board exam pattern and help students how to score better with preparation for future exams like JEE or NEET.
I have a proven track record of success in tutoring students in math, English, and science. Over the past year, I've had the privilege of working...
Hello, I am a friendly teacher. I like to teach students to grow and improve their skills and knowledge. I am a math teacher as well as a science...
With seven years in high school maths teaching, you’re experienced in simplifying complex topics and adapting lessons for diverse learning styles....
private teacher classes will be taken only for physics and chemistry
Sushma attended Class 10 Tuition
"He teaches well and explains till the concept is understood well"
Mary attended Class 10 Tuition
"not started yet"
Susan attended Class 10 Tuition
"Constructive teaching"
Ananya attended Class 10 Tuition
"Very efficient, friendly & caring."
Anna attended Class 10 Tuition
"He is prompt. He knows the subject and teaches well."
Swaraj attended Class 10 Tuition
"Satnam Sir is a very good teacher, he single handedly taught me my whole of Java..."
Binit attended Class 10 Tuition
"narayan sir has guided me very well in the whole academic year. He is very dedicated..."
Anurag attended Class 10 Tuition
"I was introduced to Narayan Sir by one of my classmates who has been taking tuition..."
Ask a Question
Post a LessonAnswered on 17 Apr Learn CBSE/Class 10/Mathematics/UNIT I: Number systems/Real numbers/Euclid's Division Lemma
Nazia Khanum
To find the Highest Common Factor (HCF) of 52 and 117 and express it in the form 52x + 117y, we can use the Euclidean algorithm.
Step 1: Find the Remainder
Divide the larger number by the smaller number and find the remainder.
117=2×52+13117=2×52+13
So, the remainder is 13.
Step 2: Replace Numbers
Now, replace the divisor with the previous remainder, and the dividend with the divisor.
52=4×13+052=4×13+0
Here, the remainder is 0, so we stop. The divisor at this step, which is 13, is the HCF.
Expressing in the given form
Now, we backtrack to express the HCF, which is 13, in the form 52x + 117y.
Using the reverse steps of the Euclidean algorithm, we can express the HCF as a linear combination of 52 and 117:
13=117−2×5213=117−2×52
Hence, the HCF of 52 and 117 expressed in the form 52x + 117y is 13=117−2×5213=117−2×52.
Answered on 17 Apr Learn CBSE/Class 10/Mathematics/UNIT I: Number systems/Real numbers/Euclid's Division Lemma
Nazia Khanum
To prove that x2−xx2−x is divisible by 2 for all positive integer xx, we can use mathematical induction.
Base Case: Let's start by checking the base case. When x=1x=1, x2−x=12−1=0x2−x=12−1=0. Since 0 is divisible by 2, the base case holds.
Inductive Hypothesis: Assume that x2−xx2−x is divisible by 2 for some positive integer kk, i.e., k2−kk2−k is divisible by 2.
Inductive Step: We need to show that if the statement holds for kk, then it also holds for k+1k+1.
(k+1)2−(k+1)=k2+2k+1−k−1=k2+k=(k2−k)+k(k+1)2−(k+1)=k2+2k+1−k−1=k2+k=(k2−k)+k
By the inductive hypothesis, we know that k2−kk2−k is divisible by 2. And we know that kk is a positive integer, so kk is also divisible by 2 or it is an odd number.
If kk is divisible by 2, then k2−kk2−k is divisible by 2, and kk is divisible by 2, so their sum (k2−k)+k(k2−k)+k is also divisible by 2.
If kk is an odd number, then k2−kk2−k is still divisible by 2, and when you add kk to it, you still get an even number, which is divisible by 2.
In both cases, (k+1)2−(k+1)(k+1)2−(k+1) is divisible by 2.
Therefore, by mathematical induction, we conclude that x2−xx2−x is divisible by 2 for all positive integers xx.
Answered on 17 Apr Learn CBSE/Class 10/Mathematics/UNIT I: Number systems/Real numbers/Euclid's Division Lemma
Nazia Khanum
Sure, let's prove this statement.
Let's start with m=2k+1m=2k+1 and n=2l+1n=2l+1, where kk and ll are integers.
Now, let's square both mm and nn:
m2=(2k+1)2=4k2+4k+1=2(2k2+2k)+1m2=(2k+1)2=4k2+4k+1=2(2k2+2k)+1 n2=(2l+1)2=4l2+4l+1=2(2l2+2l)+1n2=(2l+1)2=4l2+4l+1=2(2l2+2l)+1
Now, let's sum them:
m2+n2=2(2k2+2k)+1+2(2l2+2l)+1=2(2k2+2k+2l2+2l)+2m2+n2=2(2k2+2k)+1+2(2l2+2l)+1=2(2k2+2k+2l2+2l)+2
Since 2k2+2k+2l2+2l2k2+2k+2l2+2l is an integer, let's denote it as qq. Then:
m2+n2=2q+2m2+n2=2q+2
This clearly shows that m2+n2m2+n2 is even, as it is divisible by 22.
To prove that m2+n2m2+n2 is not divisible by 44, let's consider the possible remainders when dividing by 44:
Thus, m2+n2m2+n2 is even but not divisible by 44 when both mm and nn are odd positive integers.
Answered on 17 Apr Learn CBSE/Class 10/Mathematics/UNIT I: Number systems/Real numbers/Euclid's Division Lemma
Nazia Khanum
To find aa, we can use the relationship between the highest common factor (HCF) and the least common multiple (LCM).
Given: HCF(6,a)=2HCF(6,a)=2 LCM(6,a)=60LCM(6,a)=60
We know that the product of the HCF and LCM of two numbers is equal to the product of the numbers themselves. So, we have:
HCF(6,a)×LCM(6,a)=6×aHCF(6,a)×LCM(6,a)=6×a
Substituting the given values:
2×60=6×a2×60=6×a 120=6a120=6a
Now, we solve for aa:
a=1206a=6120 a=20a=20
Therefore, a=20a=20.
Answered on 17 Apr Learn CBSE/Class 10/Mathematics/UNIT I: Number systems/Real numbers/Euclid's Division Lemma
Nazia Khanum
To find the smallest number that is divisible by both 90 and 144 when increased by 20, we need to find the least common multiple (LCM) of 90 and 144. Then, we'll add 20 to that LCM to get our answer.
First, let's find the LCM of 90 and 144.
The prime factorization of 90 is 2×32×52×32×5.
The prime factorization of 144 is 24×3224×32.
To find the LCM, we take the highest power of each prime factor that appears in either number:
LCM=24×32×5=720LCM=24×32×5=720
Now, we add 20 to 720:
720+20=740720+20=740
So, the smallest number that, when increased by 20, is exactly divisible by both 90 and 144 is 740.
Ask a Question